Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakangāwaritia te tauraro o \frac{4-\sqrt{2}}{4+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakaarohia te \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Pūrua 4. Pūrua \sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Tangohia te 2 i te 16, ka 14.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakareatia te 4-\sqrt{2} ki te 4-\sqrt{2}, ka \left(4-\sqrt{2}\right)^{2}.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{2}\right)^{2}.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Tāpirihia te 16 ki te 2, ka 18.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{4+\sqrt{2}}{4-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
Pūrua 4. Pūrua \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
Tangohia te 2 i te 16, ka 14.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
Whakareatia te 4+\sqrt{2} ki te 4+\sqrt{2}, ka \left(4+\sqrt{2}\right)^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{2}\right)^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
Ko te pūrua o \sqrt{2} ko 2.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
Tāpirihia te 16 ki te 2, ka 18.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
Tā te mea he rite te tauraro o \frac{18-8\sqrt{2}}{14} me \frac{18+8\sqrt{2}}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
Mahia ngā whakarea i roto o 18-8\sqrt{2}-\left(18+8\sqrt{2}\right).
\frac{-16\sqrt{2}}{14}
Mahia ngā tātaitai i roto o 18-8\sqrt{2}-18-8\sqrt{2}.
-\frac{8}{7}\sqrt{2}
Whakawehea te -16\sqrt{2} ki te 14, kia riro ko -\frac{8}{7}\sqrt{2}.