Aromātai
-\frac{8\sqrt{2}}{7}\approx -1.616244071
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakangāwaritia te tauraro o \frac{4-\sqrt{2}}{4+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakaarohia te \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Pūrua 4. Pūrua \sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Tangohia te 2 i te 16, ka 14.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakareatia te 4-\sqrt{2} ki te 4-\sqrt{2}, ka \left(4-\sqrt{2}\right)^{2}.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{2}\right)^{2}.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Tāpirihia te 16 ki te 2, ka 18.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{4+\sqrt{2}}{4-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
Pūrua 4. Pūrua \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
Tangohia te 2 i te 16, ka 14.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
Whakareatia te 4+\sqrt{2} ki te 4+\sqrt{2}, ka \left(4+\sqrt{2}\right)^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{2}\right)^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
Ko te pūrua o \sqrt{2} ko 2.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
Tāpirihia te 16 ki te 2, ka 18.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
Tā te mea he rite te tauraro o \frac{18-8\sqrt{2}}{14} me \frac{18+8\sqrt{2}}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
Mahia ngā whakarea i roto o 18-8\sqrt{2}-\left(18+8\sqrt{2}\right).
\frac{-16\sqrt{2}}{14}
Mahia ngā tātaitai i roto o 18-8\sqrt{2}-18-8\sqrt{2}.
-\frac{8}{7}\sqrt{2}
Whakawehea te -16\sqrt{2} ki te 14, kia riro ko -\frac{8}{7}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}