Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(y+2\right)\times 4-\left(6y-4\right)=\left(y-2\right)\times 6
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-2\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-2,y^{2}-4,y+2.
4y+8-\left(6y-4\right)=\left(y-2\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te 4.
4y+8-6y+4=\left(y-2\right)\times 6
Hei kimi i te tauaro o 6y-4, kimihia te tauaro o ia taurangi.
-2y+8+4=\left(y-2\right)\times 6
Pahekotia te 4y me -6y, ka -2y.
-2y+12=\left(y-2\right)\times 6
Tāpirihia te 8 ki te 4, ka 12.
-2y+12=6y-12
Whakamahia te āhuatanga tohatoha hei whakarea te y-2 ki te 6.
-2y+12-6y=-12
Tangohia te 6y mai i ngā taha e rua.
-8y+12=-12
Pahekotia te -2y me -6y, ka -8y.
-8y=-12-12
Tangohia te 12 mai i ngā taha e rua.
-8y=-24
Tangohia te 12 i te -12, ka -24.
y=\frac{-24}{-8}
Whakawehea ngā taha e rua ki te -8.
y=3
Whakawehea te -24 ki te -8, kia riro ko 3.