Whakaoti mō y
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(y+2\right)\times 4-\left(6y-4\right)=\left(y-2\right)\times 6
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-2\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-2,y^{2}-4,y+2.
4y+8-\left(6y-4\right)=\left(y-2\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te 4.
4y+8-6y+4=\left(y-2\right)\times 6
Hei kimi i te tauaro o 6y-4, kimihia te tauaro o ia taurangi.
-2y+8+4=\left(y-2\right)\times 6
Pahekotia te 4y me -6y, ka -2y.
-2y+12=\left(y-2\right)\times 6
Tāpirihia te 8 ki te 4, ka 12.
-2y+12=6y-12
Whakamahia te āhuatanga tohatoha hei whakarea te y-2 ki te 6.
-2y+12-6y=-12
Tangohia te 6y mai i ngā taha e rua.
-8y+12=-12
Pahekotia te -2y me -6y, ka -8y.
-8y=-12-12
Tangohia te 12 mai i ngā taha e rua.
-8y=-24
Tangohia te 12 i te -12, ka -24.
y=\frac{-24}{-8}
Whakawehea ngā taha e rua ki te -8.
y=3
Whakawehea te -24 ki te -8, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}