Whakaoti mō x
x = \frac{\sqrt{57} + 9}{2} \approx 8.274917218
x=\frac{9-\sqrt{57}}{2}\approx 0.725082782
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x.
x\times 4+2x-6=x\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
6x-6=x\left(x-3\right)
Pahekotia te x\times 4 me 2x, ka 6x.
6x-6=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
6x-6-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
6x-6-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
9x-6-x^{2}=0
Pahekotia te 6x me 3x, ka 9x.
-x^{2}+9x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+4\left(-6\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-9±\sqrt{81-24}}{2\left(-1\right)}
Whakareatia 4 ki te -6.
x=\frac{-9±\sqrt{57}}{2\left(-1\right)}
Tāpiri 81 ki te -24.
x=\frac{-9±\sqrt{57}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{57}-9}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{57}}{-2} ina he tāpiri te ±. Tāpiri -9 ki te \sqrt{57}.
x=\frac{9-\sqrt{57}}{2}
Whakawehe -9+\sqrt{57} ki te -2.
x=\frac{-\sqrt{57}-9}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{57}}{-2} ina he tango te ±. Tango \sqrt{57} mai i -9.
x=\frac{\sqrt{57}+9}{2}
Whakawehe -9-\sqrt{57} ki te -2.
x=\frac{9-\sqrt{57}}{2} x=\frac{\sqrt{57}+9}{2}
Kua oti te whārite te whakatau.
x\times 4+\left(x-3\right)\times 2=x\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x.
x\times 4+2x-6=x\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
6x-6=x\left(x-3\right)
Pahekotia te x\times 4 me 2x, ka 6x.
6x-6=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
6x-6-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
6x-6-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
9x-6-x^{2}=0
Pahekotia te 6x me 3x, ka 9x.
9x-x^{2}=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x^{2}+9x=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{9}{-1}x=\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-9x=\frac{6}{-1}
Whakawehe 9 ki te -1.
x^{2}-9x=-6
Whakawehe 6 ki te -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-6+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-6+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{57}{4}
Tāpiri -6 ki te \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{57}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{\sqrt{57}}{2} x-\frac{9}{2}=-\frac{\sqrt{57}}{2}
Whakarūnātia.
x=\frac{\sqrt{57}+9}{2} x=\frac{9-\sqrt{57}}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}