Whakaoti mō x
x = \frac{2 \sqrt{326} + 3}{35} \approx 1.117455433
x=\frac{3-2\sqrt{326}}{35}\approx -0.946026862
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
4x+4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
4x+4+2x-2=35\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
6x+4-2=35\left(x-1\right)\left(x+1\right)
Pahekotia te 4x me 2x, ka 6x.
6x+2=35\left(x-1\right)\left(x+1\right)
Tangohia te 2 i te 4, ka 2.
6x+2=\left(35x-35\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 35 ki te x-1.
6x+2=35x^{2}-35
Whakamahia te āhuatanga tuaritanga hei whakarea te 35x-35 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+2-35x^{2}=-35
Tangohia te 35x^{2} mai i ngā taha e rua.
6x+2-35x^{2}+35=0
Me tāpiri te 35 ki ngā taha e rua.
6x+37-35x^{2}=0
Tāpirihia te 2 ki te 35, ka 37.
-35x^{2}+6x+37=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-35\right)\times 37}}{2\left(-35\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -35 mō a, 6 mō b, me 37 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-35\right)\times 37}}{2\left(-35\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+140\times 37}}{2\left(-35\right)}
Whakareatia -4 ki te -35.
x=\frac{-6±\sqrt{36+5180}}{2\left(-35\right)}
Whakareatia 140 ki te 37.
x=\frac{-6±\sqrt{5216}}{2\left(-35\right)}
Tāpiri 36 ki te 5180.
x=\frac{-6±4\sqrt{326}}{2\left(-35\right)}
Tuhia te pūtakerua o te 5216.
x=\frac{-6±4\sqrt{326}}{-70}
Whakareatia 2 ki te -35.
x=\frac{4\sqrt{326}-6}{-70}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{326}}{-70} ina he tāpiri te ±. Tāpiri -6 ki te 4\sqrt{326}.
x=\frac{3-2\sqrt{326}}{35}
Whakawehe -6+4\sqrt{326} ki te -70.
x=\frac{-4\sqrt{326}-6}{-70}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{326}}{-70} ina he tango te ±. Tango 4\sqrt{326} mai i -6.
x=\frac{2\sqrt{326}+3}{35}
Whakawehe -6-4\sqrt{326} ki te -70.
x=\frac{3-2\sqrt{326}}{35} x=\frac{2\sqrt{326}+3}{35}
Kua oti te whārite te whakatau.
\left(x+1\right)\times 4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
4x+4+\left(x-1\right)\times 2=35\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
4x+4+2x-2=35\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
6x+4-2=35\left(x-1\right)\left(x+1\right)
Pahekotia te 4x me 2x, ka 6x.
6x+2=35\left(x-1\right)\left(x+1\right)
Tangohia te 2 i te 4, ka 2.
6x+2=\left(35x-35\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 35 ki te x-1.
6x+2=35x^{2}-35
Whakamahia te āhuatanga tuaritanga hei whakarea te 35x-35 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+2-35x^{2}=-35
Tangohia te 35x^{2} mai i ngā taha e rua.
6x-35x^{2}=-35-2
Tangohia te 2 mai i ngā taha e rua.
6x-35x^{2}=-37
Tangohia te 2 i te -35, ka -37.
-35x^{2}+6x=-37
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-35x^{2}+6x}{-35}=-\frac{37}{-35}
Whakawehea ngā taha e rua ki te -35.
x^{2}+\frac{6}{-35}x=-\frac{37}{-35}
Mā te whakawehe ki te -35 ka wetekia te whakareanga ki te -35.
x^{2}-\frac{6}{35}x=-\frac{37}{-35}
Whakawehe 6 ki te -35.
x^{2}-\frac{6}{35}x=\frac{37}{35}
Whakawehe -37 ki te -35.
x^{2}-\frac{6}{35}x+\left(-\frac{3}{35}\right)^{2}=\frac{37}{35}+\left(-\frac{3}{35}\right)^{2}
Whakawehea te -\frac{6}{35}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{35}. Nā, tāpiria te pūrua o te -\frac{3}{35} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{6}{35}x+\frac{9}{1225}=\frac{37}{35}+\frac{9}{1225}
Pūruatia -\frac{3}{35} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{6}{35}x+\frac{9}{1225}=\frac{1304}{1225}
Tāpiri \frac{37}{35} ki te \frac{9}{1225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{35}\right)^{2}=\frac{1304}{1225}
Tauwehea x^{2}-\frac{6}{35}x+\frac{9}{1225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{35}\right)^{2}}=\sqrt{\frac{1304}{1225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{35}=\frac{2\sqrt{326}}{35} x-\frac{3}{35}=-\frac{2\sqrt{326}}{35}
Whakarūnātia.
x=\frac{2\sqrt{326}+3}{35} x=\frac{3-2\sqrt{326}}{35}
Me tāpiri \frac{3}{35} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}