Whakaoti mō x
x=\frac{2\sqrt{6}}{3}+1\approx 2.632993162
x=-\frac{2\sqrt{6}}{3}+1\approx -0.632993162
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 4 } { x - 1 } + \frac { 2 } { x + 1 } = 3
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
6x+4-2=3\left(x-1\right)\left(x+1\right)
Pahekotia te 4x me 2x, ka 6x.
6x+2=3\left(x-1\right)\left(x+1\right)
Tangohia te 2 i te 4, ka 2.
6x+2=\left(3x-3\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
6x+2=3x^{2}-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-3 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+2-3x^{2}=-3
Tangohia te 3x^{2} mai i ngā taha e rua.
6x+2-3x^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
6x+5-3x^{2}=0
Tāpirihia te 2 ki te 3, ka 5.
-3x^{2}+6x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 5}}{2\left(-3\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+12\times 5}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-6±\sqrt{36+60}}{2\left(-3\right)}
Whakareatia 12 ki te 5.
x=\frac{-6±\sqrt{96}}{2\left(-3\right)}
Tāpiri 36 ki te 60.
x=\frac{-6±4\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 96.
x=\frac{-6±4\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
x=\frac{4\sqrt{6}-6}{-6}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{6}}{-6} ina he tāpiri te ±. Tāpiri -6 ki te 4\sqrt{6}.
x=-\frac{2\sqrt{6}}{3}+1
Whakawehe -6+4\sqrt{6} ki te -6.
x=\frac{-4\sqrt{6}-6}{-6}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{6}}{-6} ina he tango te ±. Tango 4\sqrt{6} mai i -6.
x=\frac{2\sqrt{6}}{3}+1
Whakawehe -6-4\sqrt{6} ki te -6.
x=-\frac{2\sqrt{6}}{3}+1 x=\frac{2\sqrt{6}}{3}+1
Kua oti te whārite te whakatau.
\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
6x+4-2=3\left(x-1\right)\left(x+1\right)
Pahekotia te 4x me 2x, ka 6x.
6x+2=3\left(x-1\right)\left(x+1\right)
Tangohia te 2 i te 4, ka 2.
6x+2=\left(3x-3\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-1.
6x+2=3x^{2}-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-3 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+2-3x^{2}=-3
Tangohia te 3x^{2} mai i ngā taha e rua.
6x-3x^{2}=-3-2
Tangohia te 2 mai i ngā taha e rua.
6x-3x^{2}=-5
Tangohia te 2 i te -3, ka -5.
-3x^{2}+6x=-5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=-\frac{5}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{6}{-3}x=-\frac{5}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-2x=-\frac{5}{-3}
Whakawehe 6 ki te -3.
x^{2}-2x=\frac{5}{3}
Whakawehe -5 ki te -3.
x^{2}-2x+1=\frac{5}{3}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{8}{3}
Tāpiri \frac{5}{3} ki te 1.
\left(x-1\right)^{2}=\frac{8}{3}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{8}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{2\sqrt{6}}{3} x-1=-\frac{2\sqrt{6}}{3}
Whakarūnātia.
x=\frac{2\sqrt{6}}{3}+1 x=-\frac{2\sqrt{6}}{3}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}