Whakaoti mō x
x = \frac{20}{19} = 1\frac{1}{19} \approx 1.052631579
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\times 4+5x\left(-6\right)=-11x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x, arā, te tauraro pātahi he tino iti rawa te kitea o x,5.
20+5x\left(-6\right)=-11x
Whakareatia te 5 ki te 4, ka 20.
20-30x=-11x
Whakareatia te 5 ki te -6, ka -30.
20-30x+11x=0
Me tāpiri te 11x ki ngā taha e rua.
20-19x=0
Pahekotia te -30x me 11x, ka -19x.
-19x=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-20}{-19}
Whakawehea ngā taha e rua ki te -19.
x=\frac{20}{19}
Ka taea te hautanga \frac{-20}{-19} te whakamāmā ki te \frac{20}{19} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}