Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4-x\times 55=14x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
4-x\times 55-14x^{2}=0
Tangohia te 14x^{2} mai i ngā taha e rua.
4-55x-14x^{2}=0
Whakareatia te -1 ki te 55, ka -55.
-14x^{2}-55x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-55 ab=-14\times 4=-56
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -14x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-56 2,-28 4,-14 7,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -56.
1-56=-55 2-28=-26 4-14=-10 7-8=-1
Tātaihia te tapeke mō ia takirua.
a=1 b=-56
Ko te otinga te takirua ka hoatu i te tapeke -55.
\left(-14x^{2}+x\right)+\left(-56x+4\right)
Tuhia anō te -14x^{2}-55x+4 hei \left(-14x^{2}+x\right)+\left(-56x+4\right).
-x\left(14x-1\right)-4\left(14x-1\right)
Tauwehea te -x i te tuatahi me te -4 i te rōpū tuarua.
\left(14x-1\right)\left(-x-4\right)
Whakatauwehea atu te kīanga pātahi 14x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{14} x=-4
Hei kimi otinga whārite, me whakaoti te 14x-1=0 me te -x-4=0.
4-x\times 55=14x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
4-x\times 55-14x^{2}=0
Tangohia te 14x^{2} mai i ngā taha e rua.
4-55x-14x^{2}=0
Whakareatia te -1 ki te 55, ka -55.
-14x^{2}-55x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-14\right)\times 4}}{2\left(-14\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -14 mō a, -55 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-14\right)\times 4}}{2\left(-14\right)}
Pūrua -55.
x=\frac{-\left(-55\right)±\sqrt{3025+56\times 4}}{2\left(-14\right)}
Whakareatia -4 ki te -14.
x=\frac{-\left(-55\right)±\sqrt{3025+224}}{2\left(-14\right)}
Whakareatia 56 ki te 4.
x=\frac{-\left(-55\right)±\sqrt{3249}}{2\left(-14\right)}
Tāpiri 3025 ki te 224.
x=\frac{-\left(-55\right)±57}{2\left(-14\right)}
Tuhia te pūtakerua o te 3249.
x=\frac{55±57}{2\left(-14\right)}
Ko te tauaro o -55 ko 55.
x=\frac{55±57}{-28}
Whakareatia 2 ki te -14.
x=\frac{112}{-28}
Nā, me whakaoti te whārite x=\frac{55±57}{-28} ina he tāpiri te ±. Tāpiri 55 ki te 57.
x=-4
Whakawehe 112 ki te -28.
x=-\frac{2}{-28}
Nā, me whakaoti te whārite x=\frac{55±57}{-28} ina he tango te ±. Tango 57 mai i 55.
x=\frac{1}{14}
Whakahekea te hautanga \frac{-2}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-4 x=\frac{1}{14}
Kua oti te whārite te whakatau.
4-x\times 55=14x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2},x.
4-x\times 55-14x^{2}=0
Tangohia te 14x^{2} mai i ngā taha e rua.
-x\times 55-14x^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-55x-14x^{2}=-4
Whakareatia te -1 ki te 55, ka -55.
-14x^{2}-55x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-14x^{2}-55x}{-14}=-\frac{4}{-14}
Whakawehea ngā taha e rua ki te -14.
x^{2}+\left(-\frac{55}{-14}\right)x=-\frac{4}{-14}
Mā te whakawehe ki te -14 ka wetekia te whakareanga ki te -14.
x^{2}+\frac{55}{14}x=-\frac{4}{-14}
Whakawehe -55 ki te -14.
x^{2}+\frac{55}{14}x=\frac{2}{7}
Whakahekea te hautanga \frac{-4}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{55}{14}x+\left(\frac{55}{28}\right)^{2}=\frac{2}{7}+\left(\frac{55}{28}\right)^{2}
Whakawehea te \frac{55}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{55}{28}. Nā, tāpiria te pūrua o te \frac{55}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{55}{14}x+\frac{3025}{784}=\frac{2}{7}+\frac{3025}{784}
Pūruatia \frac{55}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{55}{14}x+\frac{3025}{784}=\frac{3249}{784}
Tāpiri \frac{2}{7} ki te \frac{3025}{784} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{55}{28}\right)^{2}=\frac{3249}{784}
Tauwehea x^{2}+\frac{55}{14}x+\frac{3025}{784}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{55}{28}\right)^{2}}=\sqrt{\frac{3249}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{55}{28}=\frac{57}{28} x+\frac{55}{28}=-\frac{57}{28}
Whakarūnātia.
x=\frac{1}{14} x=-4
Me tango \frac{55}{28} mai i ngā taha e rua o te whārite.