Whakaoti mō x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 4-\left(3x+18\right)=x+3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+9x+18,x+3,3x+18.
12-\left(3x+18\right)=x+3
Whakareatia te 3 ki te 4, ka 12.
12-3x-18=x+3
Hei kimi i te tauaro o 3x+18, kimihia te tauaro o ia taurangi.
-6-3x=x+3
Tangohia te 18 i te 12, ka -6.
-6-3x-x=3
Tangohia te x mai i ngā taha e rua.
-6-4x=3
Pahekotia te -3x me -x, ka -4x.
-4x=3+6
Me tāpiri te 6 ki ngā taha e rua.
-4x=9
Tāpirihia te 3 ki te 6, ka 9.
x=\frac{9}{-4}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{9}{4}
Ka taea te hautanga \frac{9}{-4} te tuhi anō ko -\frac{9}{4} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}