Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(x^{2}+5x+6\right)}{\left(x^{2}+3x\right)\times 8}
Whakawehe \frac{4}{x^{2}+3x} ki te \frac{8}{x^{2}+5x+6} mā te whakarea \frac{4}{x^{2}+3x} ki te tau huripoki o \frac{8}{x^{2}+5x+6}.
\frac{x^{2}+5x+6}{2\left(x^{2}+3x\right)}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x+2}{2x}
Me whakakore tahi te x+3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x^{2}+5x+6\right)}{\left(x^{2}+3x\right)\times 8})
Whakawehe \frac{4}{x^{2}+3x} ki te \frac{8}{x^{2}+5x+6} mā te whakarea \frac{4}{x^{2}+3x} ki te tau huripoki o \frac{8}{x^{2}+5x+6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+5x+6}{2\left(x^{2}+3x\right)})
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+5x+6}{2\left(x^{2}+3x\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2}{2x})
Me whakakore tahi te x+3 i te taurunga me te tauraro.
\frac{2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)-\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})}{\left(2x^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{2x^{1}x^{1-1}-\left(x^{1}+2\right)\times 2x^{1-1}}{\left(2x^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{2x^{1}x^{0}-\left(x^{1}+2\right)\times 2x^{0}}{\left(2x^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{1}x^{0}-\left(x^{1}\times 2x^{0}+2\times 2x^{0}\right)}{\left(2x^{1}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2x^{1}-\left(2x^{1}+2\times 2x^{0}\right)}{\left(2x^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{1}-\left(2x^{1}+4x^{0}\right)}{\left(2x^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{1}-2x^{1}-4x^{0}}{\left(2x^{1}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-2\right)x^{1}-4x^{0}}{\left(2x^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
-\frac{4x^{0}}{\left(2x^{1}\right)^{2}}
Tango 2 mai i 2.
-\frac{4x^{0}}{2^{2}x^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
-\frac{4x^{0}}{4x^{2}}
Hīkina te 2 ki te pū 2.
\frac{-4x^{0}}{4x^{2}}
Whakareatia 1 ki te 2.
\left(-\frac{4}{4}\right)x^{-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
-x^{-2}
Mahia ngā tātaitanga.