Whakaoti mō x
x=-18
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-9\right)\times 4-\left(x+9\right)\times 2=5x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,9 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-9\right)\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+9,x-9,x^{2}-81.
4x-36-\left(x+9\right)\times 2=5x
Whakamahia te āhuatanga tohatoha hei whakarea te x-9 ki te 4.
4x-36-\left(2x+18\right)=5x
Whakamahia te āhuatanga tohatoha hei whakarea te x+9 ki te 2.
4x-36-2x-18=5x
Hei kimi i te tauaro o 2x+18, kimihia te tauaro o ia taurangi.
2x-36-18=5x
Pahekotia te 4x me -2x, ka 2x.
2x-54=5x
Tangohia te 18 i te -36, ka -54.
2x-54-5x=0
Tangohia te 5x mai i ngā taha e rua.
-3x-54=0
Pahekotia te 2x me -5x, ka -3x.
-3x=54
Me tāpiri te 54 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{54}{-3}
Whakawehea ngā taha e rua ki te -3.
x=-18
Whakawehea te 54 ki te -3, kia riro ko -18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}