Whakaoti mō x
x=-1
x=4
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 4 } { x + 3 } + \frac { 3 } { 2 x - 1 } = 1
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,2x-1.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te 4.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
11x-4+9=\left(2x-1\right)\left(x+3\right)
Pahekotia te 8x me 3x, ka 11x.
11x+5=\left(2x-1\right)\left(x+3\right)
Tāpirihia te -4 ki te 9, ka 5.
11x+5=2x^{2}+5x-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te x+3 ka whakakotahi i ngā kupu rite.
11x+5-2x^{2}=5x-3
Tangohia te 2x^{2} mai i ngā taha e rua.
11x+5-2x^{2}-5x=-3
Tangohia te 5x mai i ngā taha e rua.
6x+5-2x^{2}=-3
Pahekotia te 11x me -5x, ka 6x.
6x+5-2x^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
6x+8-2x^{2}=0
Tāpirihia te 5 ki te 3, ka 8.
-2x^{2}+6x+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 6 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 8}}{2\left(-2\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+8\times 8}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-6±\sqrt{36+64}}{2\left(-2\right)}
Whakareatia 8 ki te 8.
x=\frac{-6±\sqrt{100}}{2\left(-2\right)}
Tāpiri 36 ki te 64.
x=\frac{-6±10}{2\left(-2\right)}
Tuhia te pūtakerua o te 100.
x=\frac{-6±10}{-4}
Whakareatia 2 ki te -2.
x=\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-6±10}{-4} ina he tāpiri te ±. Tāpiri -6 ki te 10.
x=-1
Whakawehe 4 ki te -4.
x=-\frac{16}{-4}
Nā, me whakaoti te whārite x=\frac{-6±10}{-4} ina he tango te ±. Tango 10 mai i -6.
x=4
Whakawehe -16 ki te -4.
x=-1 x=4
Kua oti te whārite te whakatau.
\left(2x-1\right)\times 4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(2x-1\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,2x-1.
8x-4+\left(x+3\right)\times 3=\left(2x-1\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te 4.
8x-4+3x+9=\left(2x-1\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
11x-4+9=\left(2x-1\right)\left(x+3\right)
Pahekotia te 8x me 3x, ka 11x.
11x+5=\left(2x-1\right)\left(x+3\right)
Tāpirihia te -4 ki te 9, ka 5.
11x+5=2x^{2}+5x-3
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te x+3 ka whakakotahi i ngā kupu rite.
11x+5-2x^{2}=5x-3
Tangohia te 2x^{2} mai i ngā taha e rua.
11x+5-2x^{2}-5x=-3
Tangohia te 5x mai i ngā taha e rua.
6x+5-2x^{2}=-3
Pahekotia te 11x me -5x, ka 6x.
6x-2x^{2}=-3-5
Tangohia te 5 mai i ngā taha e rua.
6x-2x^{2}=-8
Tangohia te 5 i te -3, ka -8.
-2x^{2}+6x=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+6x}{-2}=-\frac{8}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{6}{-2}x=-\frac{8}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-3x=-\frac{8}{-2}
Whakawehe 6 ki te -2.
x^{2}-3x=4
Whakawehe -8 ki te -2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
x=4 x=-1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}