Whakaoti mō v
v=-\frac{5}{6}\approx -0.833333333
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 4 } { v + 3 } = - \frac { 5 } { 2 v + 6 } + 3
Tohaina
Kua tāruatia ki te papatopenga
2\times 4=-5+2\left(v+3\right)\times 3
Tē taea kia ōrite te tāupe v ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(v+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o v+3,2v+6.
8=-5+2\left(v+3\right)\times 3
Whakareatia te 2 ki te 4, ka 8.
8=-5+6\left(v+3\right)
Whakareatia te 2 ki te 3, ka 6.
8=-5+6v+18
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te v+3.
8=13+6v
Tāpirihia te -5 ki te 18, ka 13.
13+6v=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6v=8-13
Tangohia te 13 mai i ngā taha e rua.
6v=-5
Tangohia te 13 i te 8, ka -5.
v=\frac{-5}{6}
Whakawehea ngā taha e rua ki te 6.
v=-\frac{5}{6}
Ka taea te hautanga \frac{-5}{6} te tuhi anō ko -\frac{5}{6} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}