Whakaoti mō n
n=5
Tohaina
Kua tāruatia ki te papatopenga
7\times 4=2\left(n+9\right)
Tē taea kia ōrite te tāupe n ki -9 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7\left(n+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o n+9,7.
28=2\left(n+9\right)
Whakareatia te 7 ki te 4, ka 28.
28=2n+18
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te n+9.
2n+18=28
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2n=28-18
Tangohia te 18 mai i ngā taha e rua.
2n=10
Tangohia te 18 i te 28, ka 10.
n=\frac{10}{2}
Whakawehea ngā taha e rua ki te 2.
n=5
Whakawehea te 10 ki te 2, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}