Whakaoti mō k
k=\frac{49}{120}\approx 0.408333333
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 4 } { k } ( 1 + \frac { 5 } { 98 } k ) = 10
Tohaina
Kua tāruatia ki te papatopenga
98\times 4\left(1+\frac{5}{98}k\right)=980k
Tē taea kia ōrite te tāupe k ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 98k, arā, te tauraro pātahi he tino iti rawa te kitea o k,98.
392\left(1+\frac{5}{98}k\right)=980k
Whakareatia te 98 ki te 4, ka 392.
392+392\times \frac{5}{98}k=980k
Whakamahia te āhuatanga tohatoha hei whakarea te 392 ki te 1+\frac{5}{98}k.
392+\frac{392\times 5}{98}k=980k
Tuhia te 392\times \frac{5}{98} hei hautanga kotahi.
392+\frac{1960}{98}k=980k
Whakareatia te 392 ki te 5, ka 1960.
392+20k=980k
Whakawehea te 1960 ki te 98, kia riro ko 20.
392+20k-980k=0
Tangohia te 980k mai i ngā taha e rua.
392-960k=0
Pahekotia te 20k me -980k, ka -960k.
-960k=-392
Tangohia te 392 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
k=\frac{-392}{-960}
Whakawehea ngā taha e rua ki te -960.
k=\frac{49}{120}
Whakahekea te hautanga \frac{-392}{-960} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}