Whakaoti mō k
k=-\frac{1}{3}\approx -0.333333333
Tohaina
Kua tāruatia ki te papatopenga
k\times 4+\left(k+1\right)\times 5=\left(k+1\right)\times 3
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te k\left(k+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o k+1,k.
k\times 4+5k+5=\left(k+1\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te 5.
9k+5=\left(k+1\right)\times 3
Pahekotia te k\times 4 me 5k, ka 9k.
9k+5=3k+3
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te 3.
9k+5-3k=3
Tangohia te 3k mai i ngā taha e rua.
6k+5=3
Pahekotia te 9k me -3k, ka 6k.
6k=3-5
Tangohia te 5 mai i ngā taha e rua.
6k=-2
Tangohia te 5 i te 3, ka -2.
k=\frac{-2}{6}
Whakawehea ngā taha e rua ki te 6.
k=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}