Whakaoti mō b
b=\sqrt{5}\approx 2.236067977
b=-\sqrt{5}\approx -2.236067977
Tohaina
Kua tāruatia ki te papatopenga
9b^{2}\times 4+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 9b^{2}\left(b^{2}+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o b^{2}+4,9b^{2}.
36b^{2}+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Whakareatia te 9 ki te 4, ka 36.
36b^{2}+25b^{2}+100=9b^{2}\left(b^{2}+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te b^{2}+4 ki te 25.
61b^{2}+100=9b^{2}\left(b^{2}+4\right)
Pahekotia te 36b^{2} me 25b^{2}, ka 61b^{2}.
61b^{2}+100=9b^{4}+36b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9b^{2} ki te b^{2}+4.
61b^{2}+100-9b^{4}=36b^{2}
Tangohia te 9b^{4} mai i ngā taha e rua.
61b^{2}+100-9b^{4}-36b^{2}=0
Tangohia te 36b^{2} mai i ngā taha e rua.
25b^{2}+100-9b^{4}=0
Pahekotia te 61b^{2} me -36b^{2}, ka 25b^{2}.
-9t^{2}+25t+100=0
Whakakapia te t mō te b^{2}.
t=\frac{-25±\sqrt{25^{2}-4\left(-9\right)\times 100}}{-9\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -9 mō te a, te 25 mō te b, me te 100 mō te c i te ture pūrua.
t=\frac{-25±65}{-18}
Mahia ngā tātaitai.
t=-\frac{20}{9} t=5
Whakaotia te whārite t=\frac{-25±65}{-18} ina he tōrunga te ±, ina he tōraro te ±.
b=\sqrt{5} b=-\sqrt{5}
I te mea ko b=t^{2}, ka riro ngā otinga mā te arotake i te b=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}