Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4=a\times 15-9aa
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
4=a\times 15-9a^{2}
Whakareatia te a ki te a, ka a^{2}.
a\times 15-9a^{2}=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a\times 15-9a^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-9a^{2}+15a-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-15±\sqrt{15^{2}-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 15 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-15±\sqrt{225-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
Pūrua 15.
a=\frac{-15±\sqrt{225+36\left(-4\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
a=\frac{-15±\sqrt{225-144}}{2\left(-9\right)}
Whakareatia 36 ki te -4.
a=\frac{-15±\sqrt{81}}{2\left(-9\right)}
Tāpiri 225 ki te -144.
a=\frac{-15±9}{2\left(-9\right)}
Tuhia te pūtakerua o te 81.
a=\frac{-15±9}{-18}
Whakareatia 2 ki te -9.
a=-\frac{6}{-18}
Nā, me whakaoti te whārite a=\frac{-15±9}{-18} ina he tāpiri te ±. Tāpiri -15 ki te 9.
a=\frac{1}{3}
Whakahekea te hautanga \frac{-6}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
a=-\frac{24}{-18}
Nā, me whakaoti te whārite a=\frac{-15±9}{-18} ina he tango te ±. Tango 9 mai i -15.
a=\frac{4}{3}
Whakahekea te hautanga \frac{-24}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
a=\frac{1}{3} a=\frac{4}{3}
Kua oti te whārite te whakatau.
4=a\times 15-9aa
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
4=a\times 15-9a^{2}
Whakareatia te a ki te a, ka a^{2}.
a\times 15-9a^{2}=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-9a^{2}+15a=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9a^{2}+15a}{-9}=\frac{4}{-9}
Whakawehea ngā taha e rua ki te -9.
a^{2}+\frac{15}{-9}a=\frac{4}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
a^{2}-\frac{5}{3}a=\frac{4}{-9}
Whakahekea te hautanga \frac{15}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
a^{2}-\frac{5}{3}a=-\frac{4}{9}
Whakawehe 4 ki te -9.
a^{2}-\frac{5}{3}a+\left(-\frac{5}{6}\right)^{2}=-\frac{4}{9}+\left(-\frac{5}{6}\right)^{2}
Whakawehea te -\frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{6}. Nā, tāpiria te pūrua o te -\frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{5}{3}a+\frac{25}{36}=-\frac{4}{9}+\frac{25}{36}
Pūruatia -\frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{5}{3}a+\frac{25}{36}=\frac{1}{4}
Tāpiri -\frac{4}{9} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{5}{6}\right)^{2}=\frac{1}{4}
Tauwehea a^{2}-\frac{5}{3}a+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{5}{6}=\frac{1}{2} a-\frac{5}{6}=-\frac{1}{2}
Whakarūnātia.
a=\frac{4}{3} a=\frac{1}{3}
Me tāpiri \frac{5}{6} ki ngā taha e rua o te whārite.