Whakaoti mō y
y = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
4-\left(3y-1\right)\times 4=\left(-1-3y\right)\times 5
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3y-1\right)\left(3y+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9y^{2}-1,3y+1,1-3y.
4-\left(12y-4\right)=\left(-1-3y\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te 3y-1 ki te 4.
4-12y+4=\left(-1-3y\right)\times 5
Hei kimi i te tauaro o 12y-4, kimihia te tauaro o ia taurangi.
8-12y=\left(-1-3y\right)\times 5
Tāpirihia te 4 ki te 4, ka 8.
8-12y=-5-15y
Whakamahia te āhuatanga tohatoha hei whakarea te -1-3y ki te 5.
8-12y+15y=-5
Me tāpiri te 15y ki ngā taha e rua.
8+3y=-5
Pahekotia te -12y me 15y, ka 3y.
3y=-5-8
Tangohia te 8 mai i ngā taha e rua.
3y=-13
Tangohia te 8 i te -5, ka -13.
y=\frac{-13}{3}
Whakawehea ngā taha e rua ki te 3.
y=-\frac{13}{3}
Ka taea te hautanga \frac{-13}{3} te tuhi anō ko -\frac{13}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}