Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4-\left(3y-1\right)\times 4=\left(-1-3y\right)\times 5
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3y-1\right)\left(3y+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9y^{2}-1,3y+1,1-3y.
4-\left(12y-4\right)=\left(-1-3y\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te 3y-1 ki te 4.
4-12y+4=\left(-1-3y\right)\times 5
Hei kimi i te tauaro o 12y-4, kimihia te tauaro o ia taurangi.
8-12y=\left(-1-3y\right)\times 5
Tāpirihia te 4 ki te 4, ka 8.
8-12y=-5-15y
Whakamahia te āhuatanga tohatoha hei whakarea te -1-3y ki te 5.
8-12y+15y=-5
Me tāpiri te 15y ki ngā taha e rua.
8+3y=-5
Pahekotia te -12y me 15y, ka 3y.
3y=-5-8
Tangohia te 8 mai i ngā taha e rua.
3y=-13
Tangohia te 8 i te -5, ka -13.
y=\frac{-13}{3}
Whakawehea ngā taha e rua ki te 3.
y=-\frac{13}{3}
Ka taea te hautanga \frac{-13}{3} te tuhi anō ko -\frac{13}{3} mā te tango i te tohu tōraro.