Aromātai
\frac{1}{21}\approx 0.047619048
Tauwehe
\frac{1}{3 \cdot 7} = 0.047619047619047616
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{21}-\frac{11}{21}
Ko te maha noa iti rawa atu o 7 me 21 ko 21. Me tahuri \frac{4}{7} me \frac{11}{21} ki te hautau me te tautūnga 21.
\frac{12-11}{21}
Tā te mea he rite te tauraro o \frac{12}{21} me \frac{11}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{21}
Tangohia te 11 i te 12, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}