Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4}{7}\times 7\sqrt{3}+\frac{3}{8}\sqrt{192}-\frac{1}{5}\sqrt{75}
Tauwehea te 147=7^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 3} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{3}. Tuhia te pūtakerua o te 7^{2}.
4\sqrt{3}+\frac{3}{8}\sqrt{192}-\frac{1}{5}\sqrt{75}
Me whakakore te 7 me te 7.
4\sqrt{3}+\frac{3}{8}\times 8\sqrt{3}-\frac{1}{5}\sqrt{75}
Tauwehea te 192=8^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 3} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{3}. Tuhia te pūtakerua o te 8^{2}.
4\sqrt{3}+3\sqrt{3}-\frac{1}{5}\sqrt{75}
Me whakakore te 8 me te 8.
7\sqrt{3}-\frac{1}{5}\sqrt{75}
Pahekotia te 4\sqrt{3} me 3\sqrt{3}, ka 7\sqrt{3}.
7\sqrt{3}-\frac{1}{5}\times 5\sqrt{3}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
7\sqrt{3}-\sqrt{3}
Me whakakore te 5 me te 5.
6\sqrt{3}
Pahekotia te 7\sqrt{3} me -\sqrt{3}, ka 6\sqrt{3}.