Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{7}-\frac{4+1}{2}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Whakareatia te 2 ki te 2, ka 4.
\frac{4}{7}-\frac{5}{2}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Tāpirihia te 4 ki te 1, ka 5.
\frac{8}{14}-\frac{35}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Ko te maha noa iti rawa atu o 7 me 2 ko 14. Me tahuri \frac{4}{7} me \frac{5}{2} ki te hautau me te tautūnga 14.
\frac{8-35}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Tā te mea he rite te tauraro o \frac{8}{14} me \frac{35}{14}, me tango rāua mā te tango i ō raua taurunga.
-\frac{27}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Tangohia te 35 i te 8, ka -27.
-\frac{27}{14}+\frac{7}{14}-\left(-\frac{1\times 7+3}{7}\right)
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri -\frac{27}{14} me \frac{1}{2} ki te hautau me te tautūnga 14.
\frac{-27+7}{14}-\left(-\frac{1\times 7+3}{7}\right)
Tā te mea he rite te tauraro o -\frac{27}{14} me \frac{7}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-20}{14}-\left(-\frac{1\times 7+3}{7}\right)
Tāpirihia te -27 ki te 7, ka -20.
-\frac{10}{7}-\left(-\frac{1\times 7+3}{7}\right)
Whakahekea te hautanga \frac{-20}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{10}{7}-\left(-\frac{7+3}{7}\right)
Whakareatia te 1 ki te 7, ka 7.
-\frac{10}{7}-\left(-\frac{10}{7}\right)
Tāpirihia te 7 ki te 3, ka 10.
-\frac{10}{7}+\frac{10}{7}
Ko te tauaro o -\frac{10}{7} ko \frac{10}{7}.
0
Tāpirihia te -\frac{10}{7} ki te \frac{10}{7}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}