Aromātai
\frac{3x}{10}-\frac{14}{15}
Whakaroha
\frac{3x}{10}-\frac{14}{15}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 4 } { 5 } ( x - 2 ) - \frac { 1 } { 6 } ( 3 x - 4 ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{5} ki te x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Tuhia te \frac{4}{5}\left(-2\right) hei hautanga kotahi.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Whakareatia te 4 ki te -2, ka -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{6} ki te 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Tuhia te -\frac{1}{6}\times 3 hei hautanga kotahi.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Tuhia te -\frac{1}{6}\left(-4\right) hei hautanga kotahi.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Whakareatia te -1 ki te -4, ka 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Pahekotia te \frac{4}{5}x me -\frac{1}{2}x, ka \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{8}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\frac{3}{10}x+\frac{-24+10}{15}
Tā te mea he rite te tauraro o -\frac{24}{15} me \frac{10}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{10}x-\frac{14}{15}
Tāpirihia te -24 ki te 10, ka -14.
\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{5} ki te x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Tuhia te \frac{4}{5}\left(-2\right) hei hautanga kotahi.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Whakareatia te 4 ki te -2, ka -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Ka taea te hautanga \frac{-8}{5} te tuhi anō ko -\frac{8}{5} mā te tango i te tohu tōraro.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{6} ki te 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Tuhia te -\frac{1}{6}\times 3 hei hautanga kotahi.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Tuhia te -\frac{1}{6}\left(-4\right) hei hautanga kotahi.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Whakareatia te -1 ki te -4, ka 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Pahekotia te \frac{4}{5}x me -\frac{1}{2}x, ka \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{8}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\frac{3}{10}x+\frac{-24+10}{15}
Tā te mea he rite te tauraro o -\frac{24}{15} me \frac{10}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{10}x-\frac{14}{15}
Tāpirihia te -24 ki te 10, ka -14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}