Aromātai
\frac{1152}{35}\approx 32.914285714
Tauwehe
\frac{2 ^ {7} \cdot 3 ^ {2}}{5 \cdot 7} = 32\frac{32}{35} = 32.91428571428571
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\times 12}{5\left(\frac{5}{8}-\frac{1}{3}\right)}
Whakawehe \frac{4}{5} ki te \frac{\frac{5}{8}-\frac{1}{3}}{12} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{\frac{5}{8}-\frac{1}{3}}{12}.
\frac{48}{5\left(\frac{5}{8}-\frac{1}{3}\right)}
Whakareatia te 4 ki te 12, ka 48.
\frac{48}{5\left(\frac{15}{24}-\frac{8}{24}\right)}
Ko te maha noa iti rawa atu o 8 me 3 ko 24. Me tahuri \frac{5}{8} me \frac{1}{3} ki te hautau me te tautūnga 24.
\frac{48}{5\times \frac{15-8}{24}}
Tā te mea he rite te tauraro o \frac{15}{24} me \frac{8}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{48}{5\times \frac{7}{24}}
Tangohia te 8 i te 15, ka 7.
\frac{48}{\frac{5\times 7}{24}}
Tuhia te 5\times \frac{7}{24} hei hautanga kotahi.
\frac{48}{\frac{35}{24}}
Whakareatia te 5 ki te 7, ka 35.
48\times \frac{24}{35}
Whakawehe 48 ki te \frac{35}{24} mā te whakarea 48 ki te tau huripoki o \frac{35}{24}.
\frac{48\times 24}{35}
Tuhia te 48\times \frac{24}{35} hei hautanga kotahi.
\frac{1152}{35}
Whakareatia te 48 ki te 24, ka 1152.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}