Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{3}}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{4}{4\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{4\sqrt{2}}{4\times 2}\times \frac{\sqrt{3}}{\sqrt{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{\sqrt{2}}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{2}\sqrt{6}}{2\times 2}
Me whakarea te \frac{\sqrt{2}}{2} ki te \frac{\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{2}\sqrt{2}\sqrt{3}}{2\times 2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}}{2\times 2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{2\sqrt{3}}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{1}{2}\sqrt{3}
Whakawehea te 2\sqrt{3} ki te 4, kia riro ko \frac{1}{2}\sqrt{3}.