Whakaoti mō x
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{3}x+\frac{1}{2}=\frac{1}{4}-1-\frac{3}{4}x
Pahekotia te \frac{4}{3}x me -\frac{5}{3}x, ka -\frac{1}{3}x.
-\frac{1}{3}x+\frac{1}{2}=\frac{1}{4}-\frac{4}{4}-\frac{3}{4}x
Me tahuri te 1 ki te hautau \frac{4}{4}.
-\frac{1}{3}x+\frac{1}{2}=\frac{1-4}{4}-\frac{3}{4}x
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{3}x+\frac{1}{2}=-\frac{3}{4}-\frac{3}{4}x
Tangohia te 4 i te 1, ka -3.
-\frac{1}{3}x+\frac{1}{2}+\frac{3}{4}x=-\frac{3}{4}
Me tāpiri te \frac{3}{4}x ki ngā taha e rua.
\frac{5}{12}x+\frac{1}{2}=-\frac{3}{4}
Pahekotia te -\frac{1}{3}x me \frac{3}{4}x, ka \frac{5}{12}x.
\frac{5}{12}x=-\frac{3}{4}-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
\frac{5}{12}x=-\frac{3}{4}-\frac{2}{4}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri -\frac{3}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{5}{12}x=\frac{-3-2}{4}
Tā te mea he rite te tauraro o -\frac{3}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{12}x=-\frac{5}{4}
Tangohia te 2 i te -3, ka -5.
x=-\frac{5}{4}\times \frac{12}{5}
Me whakarea ngā taha e rua ki te \frac{12}{5}, te tau utu o \frac{5}{12}.
x=\frac{-5\times 12}{4\times 5}
Me whakarea te -\frac{5}{4} ki te \frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-60}{20}
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 12}{4\times 5}.
x=-3
Whakawehea te -60 ki te 20, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}