Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{3}-\left(\frac{1}{9}-\frac{21}{9}\right)-\frac{3}{2}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{1}{9} me \frac{7}{3} ki te hautau me te tautūnga 9.
\frac{4}{3}-\frac{1-21}{9}-\frac{3}{2}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{1}{9} me \frac{21}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{3}-\left(-\frac{20}{9}\right)-\frac{3}{2}-1+\frac{17}{18}
Tangohia te 21 i te 1, ka -20.
\frac{4}{3}+\frac{20}{9}-\frac{3}{2}-1+\frac{17}{18}
Ko te tauaro o -\frac{20}{9} ko \frac{20}{9}.
\frac{12}{9}+\frac{20}{9}-\frac{3}{2}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{4}{3} me \frac{20}{9} ki te hautau me te tautūnga 9.
\frac{12+20}{9}-\frac{3}{2}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{12}{9} me \frac{20}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{32}{9}-\frac{3}{2}-1+\frac{17}{18}
Tāpirihia te 12 ki te 20, ka 32.
\frac{64}{18}-\frac{27}{18}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 9 me 2 ko 18. Me tahuri \frac{32}{9} me \frac{3}{2} ki te hautau me te tautūnga 18.
\frac{64-27}{18}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{64}{18} me \frac{27}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{37}{18}-1+\frac{17}{18}
Tangohia te 27 i te 64, ka 37.
\frac{37}{18}-\frac{18}{18}+\frac{17}{18}
Me tahuri te 1 ki te hautau \frac{18}{18}.
\frac{37-18}{18}+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{37}{18} me \frac{18}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{19}{18}+\frac{17}{18}
Tangohia te 18 i te 37, ka 19.
\frac{19+17}{18}
Tā te mea he rite te tauraro o \frac{19}{18} me \frac{17}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36}{18}
Tāpirihia te 19 ki te 17, ka 36.
2
Whakawehea te 36 ki te 18, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}