Aromātai
-3x-\frac{61}{6}
Whakaroha
-3x-\frac{61}{6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{3}\times \frac{3}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{3} ki te \frac{3}{2}x-2.
\frac{4\times 3}{3\times 2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Me whakarea te \frac{4}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
2x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Whakawehea te 4 ki te 2, kia riro ko 2.
2x+\frac{4\left(-2\right)}{3}-\frac{5}{2}\left(2x+3\right)
Tuhia te \frac{4}{3}\left(-2\right) hei hautanga kotahi.
2x+\frac{-8}{3}-\frac{5}{2}\left(2x+3\right)
Whakareatia te 4 ki te -2, ka -8.
2x-\frac{8}{3}-\frac{5}{2}\left(2x+3\right)
Ka taea te hautanga \frac{-8}{3} te tuhi anō ko -\frac{8}{3} mā te tango i te tohu tōraro.
2x-\frac{8}{3}-\frac{5}{2}\times 2x-\frac{5}{2}\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{2} ki te 2x+3.
2x-\frac{8}{3}-5x-\frac{5}{2}\times 3
Me whakakore te 2 me te 2.
2x-\frac{8}{3}-5x+\frac{-5\times 3}{2}
Tuhia te -\frac{5}{2}\times 3 hei hautanga kotahi.
2x-\frac{8}{3}-5x+\frac{-15}{2}
Whakareatia te -5 ki te 3, ka -15.
2x-\frac{8}{3}-5x-\frac{15}{2}
Ka taea te hautanga \frac{-15}{2} te tuhi anō ko -\frac{15}{2} mā te tango i te tohu tōraro.
-3x-\frac{8}{3}-\frac{15}{2}
Pahekotia te 2x me -5x, ka -3x.
-3x-\frac{16}{6}-\frac{45}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri -\frac{8}{3} me \frac{15}{2} ki te hautau me te tautūnga 6.
-3x+\frac{-16-45}{6}
Tā te mea he rite te tauraro o -\frac{16}{6} me \frac{45}{6}, me tango rāua mā te tango i ō raua taurunga.
-3x-\frac{61}{6}
Tangohia te 45 i te -16, ka -61.
\frac{4}{3}\times \frac{3}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{3} ki te \frac{3}{2}x-2.
\frac{4\times 3}{3\times 2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Me whakarea te \frac{4}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{2}x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
2x+\frac{4}{3}\left(-2\right)-\frac{5}{2}\left(2x+3\right)
Whakawehea te 4 ki te 2, kia riro ko 2.
2x+\frac{4\left(-2\right)}{3}-\frac{5}{2}\left(2x+3\right)
Tuhia te \frac{4}{3}\left(-2\right) hei hautanga kotahi.
2x+\frac{-8}{3}-\frac{5}{2}\left(2x+3\right)
Whakareatia te 4 ki te -2, ka -8.
2x-\frac{8}{3}-\frac{5}{2}\left(2x+3\right)
Ka taea te hautanga \frac{-8}{3} te tuhi anō ko -\frac{8}{3} mā te tango i te tohu tōraro.
2x-\frac{8}{3}-\frac{5}{2}\times 2x-\frac{5}{2}\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{2} ki te 2x+3.
2x-\frac{8}{3}-5x-\frac{5}{2}\times 3
Me whakakore te 2 me te 2.
2x-\frac{8}{3}-5x+\frac{-5\times 3}{2}
Tuhia te -\frac{5}{2}\times 3 hei hautanga kotahi.
2x-\frac{8}{3}-5x+\frac{-15}{2}
Whakareatia te -5 ki te 3, ka -15.
2x-\frac{8}{3}-5x-\frac{15}{2}
Ka taea te hautanga \frac{-15}{2} te tuhi anō ko -\frac{15}{2} mā te tango i te tohu tōraro.
-3x-\frac{8}{3}-\frac{15}{2}
Pahekotia te 2x me -5x, ka -3x.
-3x-\frac{16}{6}-\frac{45}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri -\frac{8}{3} me \frac{15}{2} ki te hautau me te tautūnga 6.
-3x+\frac{-16-45}{6}
Tā te mea he rite te tauraro o -\frac{16}{6} me \frac{45}{6}, me tango rāua mā te tango i ō raua taurunga.
-3x-\frac{61}{6}
Tangohia te 45 i te -16, ka -61.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}