Whakaoti mō h
h = \frac{273}{44} = 6\frac{9}{44} \approx 6.204545455
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\times 22}{3\times 7}\times 42\times 4-2=\frac{22}{7}\times 6\times 6h
Me whakarea te \frac{4}{3} ki te \frac{22}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{88}{21}\times 42\times 4-2=\frac{22}{7}\times 6\times 6h
Mahia ngā whakarea i roto i te hautanga \frac{4\times 22}{3\times 7}.
\frac{88\times 42}{21}\times 4-2=\frac{22}{7}\times 6\times 6h
Tuhia te \frac{88}{21}\times 42 hei hautanga kotahi.
\frac{3696}{21}\times 4-2=\frac{22}{7}\times 6\times 6h
Whakareatia te 88 ki te 42, ka 3696.
176\times 4-2=\frac{22}{7}\times 6\times 6h
Whakawehea te 3696 ki te 21, kia riro ko 176.
704-2=\frac{22}{7}\times 6\times 6h
Whakareatia te 176 ki te 4, ka 704.
702=\frac{22}{7}\times 6\times 6h
Tangohia te 2 i te 704, ka 702.
702=\frac{22\times 6}{7}\times 6h
Tuhia te \frac{22}{7}\times 6 hei hautanga kotahi.
702=\frac{132}{7}\times 6h
Whakareatia te 22 ki te 6, ka 132.
702=\frac{132\times 6}{7}h
Tuhia te \frac{132}{7}\times 6 hei hautanga kotahi.
702=\frac{792}{7}h
Whakareatia te 132 ki te 6, ka 792.
\frac{792}{7}h=702
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=702\times \frac{7}{792}
Me whakarea ngā taha e rua ki te \frac{7}{792}, te tau utu o \frac{792}{7}.
h=\frac{702\times 7}{792}
Tuhia te 702\times \frac{7}{792} hei hautanga kotahi.
h=\frac{4914}{792}
Whakareatia te 702 ki te 7, ka 4914.
h=\frac{273}{44}
Whakahekea te hautanga \frac{4914}{792} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}