Whakaoti mō x (complex solution)
x=-\frac{\sqrt{14}i}{2}\approx -0-1.870828693i
x=\frac{\sqrt{14}i}{2}\approx 1.870828693i
Graph
Tohaina
Kua tāruatia ki te papatopenga
4=-x^{2}+\frac{1}{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
-x^{2}+\frac{1}{2}=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}=4-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
-x^{2}=\frac{7}{2}
Tangohia te \frac{1}{2} i te 4, ka \frac{7}{2}.
x^{2}=\frac{\frac{7}{2}}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=\frac{7}{2\left(-1\right)}
Tuhia te \frac{\frac{7}{2}}{-1} hei hautanga kotahi.
x^{2}=\frac{7}{-2}
Whakareatia te 2 ki te -1, ka -2.
x^{2}=-\frac{7}{2}
Ka taea te hautanga \frac{7}{-2} te tuhi anō ko -\frac{7}{2} mā te tango i te tohu tōraro.
x=\frac{\sqrt{14}i}{2} x=-\frac{\sqrt{14}i}{2}
Kua oti te whārite te whakatau.
4=-x^{2}+\frac{1}{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
-x^{2}+\frac{1}{2}=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+\frac{1}{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-x^{2}-\frac{7}{2}=0
Tangohia te 4 i te \frac{1}{2}, ka -\frac{7}{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me -\frac{7}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\left(-\frac{7}{2}\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{-14}}{2\left(-1\right)}
Whakareatia 4 ki te -\frac{7}{2}.
x=\frac{0±\sqrt{14}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -14.
x=\frac{0±\sqrt{14}i}{-2}
Whakareatia 2 ki te -1.
x=-\frac{\sqrt{14}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{14}i}{-2} ina he tāpiri te ±.
x=\frac{\sqrt{14}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{14}i}{-2} ina he tango te ±.
x=-\frac{\sqrt{14}i}{2} x=\frac{\sqrt{14}i}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}