Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}
Whakangāwaritia te tauraro o \frac{4}{2\sqrt{3}-3} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{3}+3.
\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}
Whakaarohia te \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4\left(2\sqrt{3}+3\right)}{12-3^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{4\left(2\sqrt{3}+3\right)}{12-9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{4\left(2\sqrt{3}+3\right)}{3}
Tangohia te 9 i te 12, ka 3.
\frac{8\sqrt{3}+12}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2\sqrt{3}+3.