Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4}{3}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4}{3}+\frac{1}{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{4}{3}+\frac{2^{2}}{\left(\sqrt{3}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Whakawehe 1 ki te \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} mā te whakarea 1 ki te tau huripoki o \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}.
\frac{4}{3}+\frac{4}{\left(\sqrt{3}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4}{3}+\frac{4}{3}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{8}{3}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Tāpirihia te \frac{4}{3} ki te \frac{4}{3}, ka \frac{8}{3}.
\frac{8}{3}-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{8}{3}-\left(\frac{\sqrt{2}}{2}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8}{3}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{8}{3}-\frac{2}{2^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8}{3}-\frac{2}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{8}{3}-\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{13}{6}
Tangohia te \frac{1}{2} i te \frac{8}{3}, ka \frac{13}{6}.