Aromātai
\frac{13}{6}\approx 2.166666667
Tauwehe
\frac{13}{2 \cdot 3} = 2\frac{1}{6} = 2.1666666666666665
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{3}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4}{3}+\frac{1}{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{4}{3}+\frac{2^{2}}{\left(\sqrt{3}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Whakawehe 1 ki te \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} mā te whakarea 1 ki te tau huripoki o \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}.
\frac{4}{3}+\frac{4}{\left(\sqrt{3}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4}{3}+\frac{4}{3}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{8}{3}-\left(\frac{1}{\sqrt{2}}\right)^{2}
Tāpirihia te \frac{4}{3} ki te \frac{4}{3}, ka \frac{8}{3}.
\frac{8}{3}-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{8}{3}-\left(\frac{\sqrt{2}}{2}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8}{3}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{8}{3}-\frac{2}{2^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8}{3}-\frac{2}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{8}{3}-\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{13}{6}
Tangohia te \frac{1}{2} i te \frac{8}{3}, ka \frac{13}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}