Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\frac{4\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{3}+1\right)}{3-1}
Pūrua \sqrt{3}. Pūrua 1.
\frac{4\left(\sqrt{3}+1\right)}{2}
Tangohia te 1 i te 3, ka 2.
2\left(\sqrt{3}+1\right)
Whakawehea te 4\left(\sqrt{3}+1\right) ki te 2, kia riro ko 2\left(\sqrt{3}+1\right).
2\sqrt{3}+2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \sqrt{3}+1.