Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(\sqrt{2}+7\right)}{\left(\sqrt{2}-7\right)\left(\sqrt{2}+7\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{2}-7} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+7.
\frac{4\left(\sqrt{2}+7\right)}{\left(\sqrt{2}\right)^{2}-7^{2}}
Whakaarohia te \left(\sqrt{2}-7\right)\left(\sqrt{2}+7\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+7\right)}{2-49}
Pūrua \sqrt{2}. Pūrua 7.
\frac{4\left(\sqrt{2}+7\right)}{-47}
Tangohia te 49 i te 2, ka -47.
\frac{4\sqrt{2}+28}{-47}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \sqrt{2}+7.