Aromātai
\frac{-2\sqrt{2}-12}{17}\approx -0.872260419
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{2}-6} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+6.
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}\right)^{2}-6^{2}}
Whakaarohia te \left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+6\right)}{2-36}
Pūrua \sqrt{2}. Pūrua 6.
\frac{4\left(\sqrt{2}+6\right)}{-34}
Tangohia te 36 i te 2, ka -34.
-\frac{2}{17}\left(\sqrt{2}+6\right)
Whakawehea te 4\left(\sqrt{2}+6\right) ki te -34, kia riro ko -\frac{2}{17}\left(\sqrt{2}+6\right).
-\frac{2}{17}\sqrt{2}-\frac{2}{17}\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{2}{17} ki te \sqrt{2}+6.
-\frac{2}{17}\sqrt{2}+\frac{-2\times 6}{17}
Tuhia te -\frac{2}{17}\times 6 hei hautanga kotahi.
-\frac{2}{17}\sqrt{2}+\frac{-12}{17}
Whakareatia te -2 ki te 6, ka -12.
-\frac{2}{17}\sqrt{2}-\frac{12}{17}
Ka taea te hautanga \frac{-12}{17} te tuhi anō ko -\frac{12}{17} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}