Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
Whakareatia te 4 ki te 6, ka 24.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Tauwehea te x^{2}-4x+3.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x-1\right) me 3-x ko \left(x-3\right)\left(x-1\right). Whakareatia \frac{3}{3-x} ki te \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Tā te mea he rite te tauraro o \frac{24}{\left(x-3\right)\left(x-1\right)} me \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Mahia ngā whakarea i roto o 24-3\left(-1\right)\left(x-1\right).
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Whakakotahitia ngā kupu rite i 24+3x-3.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x-1\right) me x-1 ko \left(x-3\right)\left(x-1\right). Whakareatia \frac{4}{x-1} ki te \frac{x-3}{x-3}.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Tā te mea he rite te tauraro o \frac{21+3x}{\left(x-3\right)\left(x-1\right)} me \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
Mahia ngā whakarea i roto o 21+3x-4\left(x-3\right).
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
Whakakotahitia ngā kupu rite i 21+3x-4x+12.
\frac{33-x}{x^{2}-4x+3}
Whakarohaina te \left(x-3\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
Whakareatia te 4 ki te 6, ka 24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
Tauwehea te x^{2}-4x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x-1\right) me 3-x ko \left(x-3\right)\left(x-1\right). Whakareatia \frac{3}{3-x} ki te \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Tā te mea he rite te tauraro o \frac{24}{\left(x-3\right)\left(x-1\right)} me \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Mahia ngā whakarea i roto o 24-3\left(-1\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Whakakotahitia ngā kupu rite i 24+3x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x-1\right) me x-1 ko \left(x-3\right)\left(x-1\right). Whakareatia \frac{4}{x-1} ki te \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Tā te mea he rite te tauraro o \frac{21+3x}{\left(x-3\right)\left(x-1\right)} me \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
Mahia ngā whakarea i roto o 21+3x-4\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
Whakakotahitia ngā kupu rite i 21+3x-4x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-1 ka whakakotahi i ngā kupu rite.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Whakarūnātia.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Whakareatia x^{2}-4x^{1}+3 ki te -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Whakareatia -x^{1}+33 ki te 2x^{1}-4x^{0}.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Whakarūnātia.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.