Aromātai
\frac{53}{99}\approx 0.535353535
Tauwehe
\frac{53}{3 ^ {2} \cdot 11} = 0.5353535353535354
Tohaina
Kua tāruatia ki te papatopenga
\frac{12\times 7+20\times 6\times 2+20\times 5}{9\times 8\left(4+5+2\right)}
Whakareatia te 4 ki te 3, ka 12. Whakareatia te 4 ki te 5, ka 20. Whakareatia te 5 ki te 4, ka 20.
\frac{84+20\times 6\times 2+20\times 5}{9\times 8\left(4+5+2\right)}
Whakareatia te 12 ki te 7, ka 84.
\frac{84+120\times 2+20\times 5}{9\times 8\left(4+5+2\right)}
Whakareatia te 20 ki te 6, ka 120.
\frac{84+240+20\times 5}{9\times 8\left(4+5+2\right)}
Whakareatia te 120 ki te 2, ka 240.
\frac{324+20\times 5}{9\times 8\left(4+5+2\right)}
Tāpirihia te 84 ki te 240, ka 324.
\frac{324+100}{9\times 8\left(4+5+2\right)}
Whakareatia te 20 ki te 5, ka 100.
\frac{424}{9\times 8\left(4+5+2\right)}
Tāpirihia te 324 ki te 100, ka 424.
\frac{424}{72\left(4+5+2\right)}
Whakareatia te 9 ki te 8, ka 72.
\frac{424}{72\left(9+2\right)}
Tāpirihia te 4 ki te 5, ka 9.
\frac{424}{72\times 11}
Tāpirihia te 9 ki te 2, ka 11.
\frac{424}{792}
Whakareatia te 72 ki te 11, ka 792.
\frac{53}{99}
Whakahekea te hautanga \frac{424}{792} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}