Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{\left(2\sqrt{3}+\sqrt{14}\right)\left(2\sqrt{3}-\sqrt{14}\right)}
Whakangāwaritia te tauraro o \frac{4\sqrt{5}}{2\sqrt{3}+\sqrt{14}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{3}-\sqrt{14}.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{14}\right)^{2}}
Whakaarohia te \left(2\sqrt{3}+\sqrt{14}\right)\left(2\sqrt{3}-\sqrt{14}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{14}\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{14}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{4\times 3-\left(\sqrt{14}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{12-\left(\sqrt{14}\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{12-14}
Ko te pūrua o \sqrt{14} ko 14.
\frac{4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)}{-2}
Tangohia te 14 i te 12, ka -2.
-2\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right)
Whakawehea te 4\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right) ki te -2, kia riro ko -2\sqrt{5}\left(2\sqrt{3}-\sqrt{14}\right).
-4\sqrt{3}\sqrt{5}+2\sqrt{5}\sqrt{14}
Whakamahia te āhuatanga tohatoha hei whakarea te -2\sqrt{5} ki te 2\sqrt{3}-\sqrt{14}.
-4\sqrt{15}+2\sqrt{5}\sqrt{14}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
-4\sqrt{15}+2\sqrt{70}
Hei whakarea \sqrt{5} me \sqrt{14}, whakareatia ngā tau i raro i te pūtake rua.