Tīpoka ki ngā ihirangi matua
Manatoko
pono
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4±\sqrt{-4^{2}-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Whakareatia ngā taha e rua o te whārite ki te -6.
4±\sqrt{-16-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
4±\sqrt{-16-\left(-12\times 39\right)}=4±\sqrt{-16+468}
Whakareatia te 4 ki te -3, ka -12.
4±\sqrt{-16-\left(-468\right)}=4±\sqrt{-16+468}
Whakareatia te -12 ki te 39, ka -468.
4±\sqrt{-16+468}=4±\sqrt{-16+468}
Ko te tauaro o -468 ko 468.
4±\sqrt{452}=4±\sqrt{-16+468}
Tāpirihia te -16 ki te 468, ka 452.
4±2\sqrt{113}=4±\sqrt{-16+468}
Tauwehea te 452=2^{2}\times 113. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 113} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{113}. Tuhia te pūtakerua o te 2^{2}.
4±2\sqrt{113}=4±\sqrt{452}
Tāpirihia te -16 ki te 468, ka 452.
4±2\sqrt{113}=4±2\sqrt{113}
Tauwehea te 452=2^{2}\times 113. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 113} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{113}. Tuhia te pūtakerua o te 2^{2}.
4±2\sqrt{113}-\left(4±2\sqrt{113}\right)=0
Tangohia te 4±2\sqrt{113} mai i ngā taha e rua.
0=0
Pahekotia te 4±2\sqrt{113} me -\left(4±2\sqrt{113}\right), ka 0.
\text{true}
Whakatauritea te 0 me te 0.