Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
4±\sqrt{-4^{2}-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Whakareatia ngā taha e rua o te whārite ki te -6.
4±\sqrt{-16-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
4±\sqrt{-16-\left(-12\times 39\right)}=4±\sqrt{-16+468}
Whakareatia te 4 ki te -3, ka -12.
4±\sqrt{-16-\left(-468\right)}=4±\sqrt{-16+468}
Whakareatia te -12 ki te 39, ka -468.
4±\sqrt{-16+468}=4±\sqrt{-16+468}
Ko te tauaro o -468 ko 468.
4±\sqrt{452}=4±\sqrt{-16+468}
Tāpirihia te -16 ki te 468, ka 452.
4±2\sqrt{113}=4±\sqrt{-16+468}
Tauwehea te 452=2^{2}\times 113. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 113} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{113}. Tuhia te pūtakerua o te 2^{2}.
4±2\sqrt{113}=4±\sqrt{452}
Tāpirihia te -16 ki te 468, ka 452.
4±2\sqrt{113}=4±2\sqrt{113}
Tauwehea te 452=2^{2}\times 113. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 113} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{113}. Tuhia te pūtakerua o te 2^{2}.
4±2\sqrt{113}-\left(4±2\sqrt{113}\right)=0
Tangohia te 4±2\sqrt{113} mai i ngā taha e rua.
0=0
Pahekotia te 4±2\sqrt{113} me -\left(4±2\sqrt{113}\right), ka 0.
\text{true}
Whakatauritea te 0 me te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}