Aromātai
\frac{1845}{679}\approx 2.717231222
Tauwehe
\frac{3 ^ {2} \cdot 5 \cdot 41}{7 \cdot 97} = 2\frac{487}{679} = 2.7172312223858617
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{28+3}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Whakareatia te 4 ki te 7, ka 28.
\frac{\frac{31}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 28 ki te 3, ka 31.
\frac{\frac{31}{7}-\frac{28+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Whakareatia te 2 ki te 14, ka 28.
\frac{\frac{31}{7}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 28 ki te 1, ka 29.
\frac{\frac{62}{14}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{31}{7} me \frac{29}{14} ki te hautau me te tautūnga 14.
\frac{\frac{62-29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tā te mea he rite te tauraro o \frac{62}{14} me \frac{29}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{33}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tangohia te 29 i te 62, ka 33.
\frac{\frac{33}{14}+\frac{6+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\frac{33}{14}+\frac{7}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{33}{14}+\frac{49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri \frac{33}{14} me \frac{7}{2} ki te hautau me te tautūnga 14.
\frac{\frac{33+49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tā te mea he rite te tauraro o \frac{33}{14} me \frac{49}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{82}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 33 ki te 49, ka 82.
\frac{\frac{41}{7}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Whakahekea te hautanga \frac{82}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{41}{7}}{\frac{18+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Whakareatia te 6 ki te 3, ka 18.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 18 ki te 2, ka 20.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{45+5}{9}-\frac{10\times 15+1}{15}}
Whakareatia te 5 ki te 9, ka 45.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{50}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 45 ki te 5, ka 50.
\frac{\frac{41}{7}}{\frac{60}{9}+\frac{50}{9}-\frac{10\times 15+1}{15}}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{20}{3} me \frac{50}{9} ki te hautau me te tautūnga 9.
\frac{\frac{41}{7}}{\frac{60+50}{9}-\frac{10\times 15+1}{15}}
Tā te mea he rite te tauraro o \frac{60}{9} me \frac{50}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{10\times 15+1}{15}}
Tāpirihia te 60 ki te 50, ka 110.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{150+1}{15}}
Whakareatia te 10 ki te 15, ka 150.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{151}{15}}
Tāpirihia te 150 ki te 1, ka 151.
\frac{\frac{41}{7}}{\frac{550}{45}-\frac{453}{45}}
Ko te maha noa iti rawa atu o 9 me 15 ko 45. Me tahuri \frac{110}{9} me \frac{151}{15} ki te hautau me te tautūnga 45.
\frac{\frac{41}{7}}{\frac{550-453}{45}}
Tā te mea he rite te tauraro o \frac{550}{45} me \frac{453}{45}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{41}{7}}{\frac{97}{45}}
Tangohia te 453 i te 550, ka 97.
\frac{41}{7}\times \frac{45}{97}
Whakawehe \frac{41}{7} ki te \frac{97}{45} mā te whakarea \frac{41}{7} ki te tau huripoki o \frac{97}{45}.
\frac{41\times 45}{7\times 97}
Me whakarea te \frac{41}{7} ki te \frac{45}{97} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1845}{679}
Mahia ngā whakarea i roto i te hautanga \frac{41\times 45}{7\times 97}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}