Aromātai
\frac{6669}{2597}\approx 2.567963034
Tauwehe
\frac{3 ^ {3} \cdot 13 \cdot 19}{7 ^ {2} \cdot 53} = 2\frac{1475}{2597} = 2.5679630342703117
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{28+1}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Whakareatia te 4 ki te 7, ka 28.
\frac{\frac{29}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 28 ki te 1, ka 29.
\frac{\frac{29}{7}-\frac{28+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Whakareatia te 2 ki te 14, ka 28.
\frac{\frac{29}{7}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 28 ki te 1, ka 29.
\frac{\frac{58}{14}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{29}{7} me \frac{29}{14} ki te hautau me te tautūnga 14.
\frac{\frac{58-29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tā te mea he rite te tauraro o \frac{58}{14} me \frac{29}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tangohia te 29 i te 58, ka 29.
\frac{\frac{29}{14}+\frac{6+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\frac{29}{14}+\frac{7}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{29}{14}+\frac{49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri \frac{29}{14} me \frac{7}{2} ki te hautau me te tautūnga 14.
\frac{\frac{29+49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tā te mea he rite te tauraro o \frac{29}{14} me \frac{49}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{78}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 29 ki te 49, ka 78.
\frac{\frac{39}{7}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Whakahekea te hautanga \frac{78}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{39}{7}}{\frac{18+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Whakareatia te 6 ki te 3, ka 18.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{5\times 9+5}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 18 ki te 2, ka 20.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{45+5}{9}-\frac{10\times 19+1}{19}}
Whakareatia te 5 ki te 9, ka 45.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{50}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 45 ki te 5, ka 50.
\frac{\frac{39}{7}}{\frac{60}{9}+\frac{50}{9}-\frac{10\times 19+1}{19}}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{20}{3} me \frac{50}{9} ki te hautau me te tautūnga 9.
\frac{\frac{39}{7}}{\frac{60+50}{9}-\frac{10\times 19+1}{19}}
Tā te mea he rite te tauraro o \frac{60}{9} me \frac{50}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{10\times 19+1}{19}}
Tāpirihia te 60 ki te 50, ka 110.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{190+1}{19}}
Whakareatia te 10 ki te 19, ka 190.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{191}{19}}
Tāpirihia te 190 ki te 1, ka 191.
\frac{\frac{39}{7}}{\frac{2090}{171}-\frac{1719}{171}}
Ko te maha noa iti rawa atu o 9 me 19 ko 171. Me tahuri \frac{110}{9} me \frac{191}{19} ki te hautau me te tautūnga 171.
\frac{\frac{39}{7}}{\frac{2090-1719}{171}}
Tā te mea he rite te tauraro o \frac{2090}{171} me \frac{1719}{171}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{39}{7}}{\frac{371}{171}}
Tangohia te 1719 i te 2090, ka 371.
\frac{39}{7}\times \frac{171}{371}
Whakawehe \frac{39}{7} ki te \frac{371}{171} mā te whakarea \frac{39}{7} ki te tau huripoki o \frac{371}{171}.
\frac{39\times 171}{7\times 371}
Me whakarea te \frac{39}{7} ki te \frac{171}{371} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6669}{2597}
Mahia ngā whakarea i roto i te hautanga \frac{39\times 171}{7\times 371}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}