Aromātai
\frac{65}{108}\approx 0.601851852
Tauwehe
\frac{5 \cdot 13}{2 ^ {2} \cdot 3 ^ {3}} = 0.6018518518518519
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{8+1}{2}-\frac{3\times 3+2}{3}+\frac{1}{4}}{2-\frac{1}{5}}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{9}{2}-\frac{3\times 3+2}{3}+\frac{1}{4}}{2-\frac{1}{5}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{\frac{9}{2}-\frac{9+2}{3}+\frac{1}{4}}{2-\frac{1}{5}}
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{9}{2}-\frac{11}{3}+\frac{1}{4}}{2-\frac{1}{5}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\frac{27}{6}-\frac{22}{6}+\frac{1}{4}}{2-\frac{1}{5}}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{9}{2} me \frac{11}{3} ki te hautau me te tautūnga 6.
\frac{\frac{27-22}{6}+\frac{1}{4}}{2-\frac{1}{5}}
Tā te mea he rite te tauraro o \frac{27}{6} me \frac{22}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}+\frac{1}{4}}{2-\frac{1}{5}}
Tangohia te 22 i te 27, ka 5.
\frac{\frac{10}{12}+\frac{3}{12}}{2-\frac{1}{5}}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{\frac{10+3}{12}}{2-\frac{1}{5}}
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{13}{12}}{2-\frac{1}{5}}
Tāpirihia te 10 ki te 3, ka 13.
\frac{\frac{13}{12}}{\frac{10}{5}-\frac{1}{5}}
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{\frac{13}{12}}{\frac{10-1}{5}}
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{12}}{\frac{9}{5}}
Tangohia te 1 i te 10, ka 9.
\frac{13}{12}\times \frac{5}{9}
Whakawehe \frac{13}{12} ki te \frac{9}{5} mā te whakarea \frac{13}{12} ki te tau huripoki o \frac{9}{5}.
\frac{13\times 5}{12\times 9}
Me whakarea te \frac{13}{12} ki te \frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{65}{108}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 5}{12\times 9}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}