Aromātai
-32
Tauwehe
-32
Tohaina
Kua tāruatia ki te papatopenga
\frac{64\left(-12+2^{3}\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3+2}
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{64\left(-12+8\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3+2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{64\left(-4\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3+2}
Tāpirihia te -12 ki te 8, ka -4.
\frac{-256}{\left(2\times 3\right)^{2}-5\times 2\times 3+2}
Whakareatia te 64 ki te -4, ka -256.
\frac{-256}{6^{2}-5\times 2\times 3+2}
Whakareatia te 2 ki te 3, ka 6.
\frac{-256}{36-5\times 2\times 3+2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-256}{36-10\times 3+2}
Whakareatia te -5 ki te 2, ka -10.
\frac{-256}{36-30+2}
Whakareatia te -10 ki te 3, ka -30.
\frac{-256}{6+2}
Tangohia te 30 i te 36, ka 6.
\frac{-256}{8}
Tāpirihia te 6 ki te 2, ka 8.
-32
Whakawehea te -256 ki te 8, kia riro ko -32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}