Aromātai
-\frac{250}{3}\approx -83.333333333
Tauwehe
-\frac{250}{3} = -83\frac{1}{3} = -83.33333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{64\left(-12+2^{2}\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3}+2
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{64\left(-12+4\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3}+2
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{64\left(-8\right)}{\left(2\times 3\right)^{2}-5\times 2\times 3}+2
Tāpirihia te -12 ki te 4, ka -8.
\frac{-512}{\left(2\times 3\right)^{2}-5\times 2\times 3}+2
Whakareatia te 64 ki te -8, ka -512.
\frac{-512}{6^{2}-5\times 2\times 3}+2
Whakareatia te 2 ki te 3, ka 6.
\frac{-512}{36-5\times 2\times 3}+2
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-512}{36-10\times 3}+2
Whakareatia te -5 ki te 2, ka -10.
\frac{-512}{36-30}+2
Whakareatia te -10 ki te 3, ka -30.
\frac{-512}{6}+2
Tangohia te 30 i te 36, ka 6.
-\frac{256}{3}+2
Whakahekea te hautanga \frac{-512}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{250}{3}
Tāpirihia te -\frac{256}{3} ki te 2, ka -\frac{250}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}