Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4+3\sqrt{2}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{4+3\sqrt{2}}{2+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{3}.
\frac{\left(4+3\sqrt{2}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+3\sqrt{2}\right)\left(2-\sqrt{3}\right)}{4-3}
Pūrua 2. Pūrua \sqrt{3}.
\frac{\left(4+3\sqrt{2}\right)\left(2-\sqrt{3}\right)}{1}
Tangohia te 3 i te 4, ka 1.
\left(4+3\sqrt{2}\right)\left(2-\sqrt{3}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
8-4\sqrt{3}+6\sqrt{2}-3\sqrt{3}\sqrt{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4+3\sqrt{2} ki ia tau o 2-\sqrt{3}.
8-4\sqrt{3}+6\sqrt{2}-3\sqrt{6}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.