Aromātai
-\frac{6}{53}+\frac{32}{53}i\approx -0.113207547+0.603773585i
Wāhi Tūturu
-\frac{6}{53} = -0.11320754716981132
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(4+2i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2+7i.
\frac{\left(4+2i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+2i\right)\left(2+7i\right)}{53}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7i^{2}}{53}
Me whakarea ngā tau matatini 4+2i me 2+7i pēnā i te whakarea huarua.
\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right)}{53}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{8+28i+4i-14}{53}
Mahia ngā whakarea i roto o 4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right).
\frac{8-14+\left(28+4\right)i}{53}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8+28i+4i-14.
\frac{-6+32i}{53}
Mahia ngā tāpiri i roto o 8-14+\left(28+4\right)i.
-\frac{6}{53}+\frac{32}{53}i
Whakawehea te -6+32i ki te 53, kia riro ko -\frac{6}{53}+\frac{32}{53}i.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)})
Me whakarea te taurunga me te tauraro o \frac{4+2i}{2-7i} ki te haumi hiato o te tauraro, 2+7i.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{53})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7i^{2}}{53})
Me whakarea ngā tau matatini 4+2i me 2+7i pēnā i te whakarea huarua.
Re(\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right)}{53})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{8+28i+4i-14}{53})
Mahia ngā whakarea i roto o 4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right).
Re(\frac{8-14+\left(28+4\right)i}{53})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8+28i+4i-14.
Re(\frac{-6+32i}{53})
Mahia ngā tāpiri i roto o 8-14+\left(28+4\right)i.
Re(-\frac{6}{53}+\frac{32}{53}i)
Whakawehea te -6+32i ki te 53, kia riro ko -\frac{6}{53}+\frac{32}{53}i.
-\frac{6}{53}
Ko te wāhi tūturu o -\frac{6}{53}+\frac{32}{53}i ko -\frac{6}{53}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}