Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakangāwaritia te tauraro o \frac{4+\sqrt{5}}{4-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakaarohia te \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Pūrua 4. Pūrua \sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Tangohia te 5 i te 16, ka 11.
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakareatia te 4+\sqrt{5} ki te 4+\sqrt{5}, ka \left(4+\sqrt{5}\right)^{2}.
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{5}\right)^{2}.
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Tāpirihia te 16 ki te 5, ka 21.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{4-\sqrt{5}}{4+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Pūrua 4. Pūrua \sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Tangohia te 5 i te 16, ka 11.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
Whakareatia te 4-\sqrt{5} ki te 4-\sqrt{5}, ka \left(4-\sqrt{5}\right)^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{5}\right)^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
Ko te pūrua o \sqrt{5} ko 5.
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
Tāpirihia te 16 ki te 5, ka 21.
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
Tā te mea he rite te tauraro o \frac{21+8\sqrt{5}}{11} me \frac{21-8\sqrt{5}}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{42}{11}
Mahia ngā tātaitai i roto o 21+8\sqrt{5}+21-8\sqrt{5}.