Aromātai
\frac{42}{11}\approx 3.818181818
Tauwehe
\frac{2 \cdot 3 \cdot 7}{11} = 3\frac{9}{11} = 3.8181818181818183
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakangāwaritia te tauraro o \frac{4+\sqrt{5}}{4-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakaarohia te \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Pūrua 4. Pūrua \sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Tangohia te 5 i te 16, ka 11.
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakareatia te 4+\sqrt{5} ki te 4+\sqrt{5}, ka \left(4+\sqrt{5}\right)^{2}.
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{5}\right)^{2}.
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Tāpirihia te 16 ki te 5, ka 21.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{4-\sqrt{5}}{4+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Pūrua 4. Pūrua \sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Tangohia te 5 i te 16, ka 11.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
Whakareatia te 4-\sqrt{5} ki te 4-\sqrt{5}, ka \left(4-\sqrt{5}\right)^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{5}\right)^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
Ko te pūrua o \sqrt{5} ko 5.
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
Tāpirihia te 16 ki te 5, ka 21.
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
Tā te mea he rite te tauraro o \frac{21+8\sqrt{5}}{11} me \frac{21-8\sqrt{5}}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{42}{11}
Mahia ngā tātaitai i roto o 21+8\sqrt{5}+21-8\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}