Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}
Whakangāwaritia te tauraro o \frac{4+\sqrt{3}}{2\sqrt{3}-2} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{3}+2.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}\right)^{2}-2^{2}}
Whakaarohia te \left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{2^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{4\left(\sqrt{3}\right)^{2}-2^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{4\times 3-2^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{12-2^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{12-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{8}
Tangohia te 4 i te 12, ka 8.
\frac{8\sqrt{3}+8+2\left(\sqrt{3}\right)^{2}+2\sqrt{3}}{8}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4+\sqrt{3} ki ia tau o 2\sqrt{3}+2.
\frac{8\sqrt{3}+8+2\times 3+2\sqrt{3}}{8}
Ko te pūrua o \sqrt{3} ko 3.
\frac{8\sqrt{3}+8+6+2\sqrt{3}}{8}
Whakareatia te 2 ki te 3, ka 6.
\frac{8\sqrt{3}+14+2\sqrt{3}}{8}
Tāpirihia te 8 ki te 6, ka 14.
\frac{10\sqrt{3}+14}{8}
Pahekotia te 8\sqrt{3} me 2\sqrt{3}, ka 10\sqrt{3}.