Aromātai
\frac{1950}{x\left(2000-x\right)}
Whakaroha
\frac{1950}{x\left(2000-x\right)}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 39 } { 40 x } + \frac { 39 } { 40 ( 2000 - x ) }
Tohaina
Kua tāruatia ki te papatopenga
\frac{39\left(-x+2000\right)}{40x\left(-x+2000\right)}+\frac{39x}{40x\left(-x+2000\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 40x me 40\left(2000-x\right) ko 40x\left(-x+2000\right). Whakareatia \frac{39}{40x} ki te \frac{-x+2000}{-x+2000}. Whakareatia \frac{39}{40\left(2000-x\right)} ki te \frac{x}{x}.
\frac{39\left(-x+2000\right)+39x}{40x\left(-x+2000\right)}
Tā te mea he rite te tauraro o \frac{39\left(-x+2000\right)}{40x\left(-x+2000\right)} me \frac{39x}{40x\left(-x+2000\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-39x+78000+39x}{40x\left(-x+2000\right)}
Mahia ngā whakarea i roto o 39\left(-x+2000\right)+39x.
\frac{78000}{40x\left(-x+2000\right)}
Whakakotahitia ngā kupu rite i -39x+78000+39x.
\frac{78000}{-40x^{2}+80000x}
Whakarohaina te 40x\left(-x+2000\right).
\frac{39\left(-x+2000\right)}{40x\left(-x+2000\right)}+\frac{39x}{40x\left(-x+2000\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 40x me 40\left(2000-x\right) ko 40x\left(-x+2000\right). Whakareatia \frac{39}{40x} ki te \frac{-x+2000}{-x+2000}. Whakareatia \frac{39}{40\left(2000-x\right)} ki te \frac{x}{x}.
\frac{39\left(-x+2000\right)+39x}{40x\left(-x+2000\right)}
Tā te mea he rite te tauraro o \frac{39\left(-x+2000\right)}{40x\left(-x+2000\right)} me \frac{39x}{40x\left(-x+2000\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-39x+78000+39x}{40x\left(-x+2000\right)}
Mahia ngā whakarea i roto o 39\left(-x+2000\right)+39x.
\frac{78000}{40x\left(-x+2000\right)}
Whakakotahitia ngā kupu rite i -39x+78000+39x.
\frac{78000}{-40x^{2}+80000x}
Whakarohaina te 40x\left(-x+2000\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}