Aromātai
6
Tauwehe
2\times 3
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 39 } { 12 } + \frac { 26 } { 10 } + \frac { 3 } { 20 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{13}{4}+\frac{26}{10}+\frac{3}{20}
Whakahekea te hautanga \frac{39}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{13}{4}+\frac{13}{5}+\frac{3}{20}
Whakahekea te hautanga \frac{26}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{65}{20}+\frac{52}{20}+\frac{3}{20}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{13}{4} me \frac{13}{5} ki te hautau me te tautūnga 20.
\frac{65+52}{20}+\frac{3}{20}
Tā te mea he rite te tauraro o \frac{65}{20} me \frac{52}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{117}{20}+\frac{3}{20}
Tāpirihia te 65 ki te 52, ka 117.
\frac{117+3}{20}
Tā te mea he rite te tauraro o \frac{117}{20} me \frac{3}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{120}{20}
Tāpirihia te 117 ki te 3, ka 120.
6
Whakawehea te 120 ki te 20, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}