Aromātai
\frac{19000\sqrt{391161}}{391161}\approx 30.379164608
Tohaina
Kua tāruatia ki te papatopenga
\frac{380}{\sqrt{\frac{5.36^{2}}{0.2}+3.58^{2}}}
Tāpirihia te 2.1 ki te 3.26, ka 5.36.
\frac{380}{\sqrt{\frac{28.7296}{0.2}+3.58^{2}}}
Tātaihia te 5.36 mā te pū o 2, kia riro ko 28.7296.
\frac{380}{\sqrt{\frac{287296}{2000}+3.58^{2}}}
Whakarohaina te \frac{28.7296}{0.2} mā te whakarea i te taurunga me te tauraro ki te 10000.
\frac{380}{\sqrt{\frac{17956}{125}+3.58^{2}}}
Whakahekea te hautanga \frac{287296}{2000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{380}{\sqrt{\frac{17956}{125}+12.8164}}
Tātaihia te 3.58 mā te pū o 2, kia riro ko 12.8164.
\frac{380}{\sqrt{\frac{391161}{2500}}}
Tāpirihia te \frac{17956}{125} ki te 12.8164, ka \frac{391161}{2500}.
\frac{380}{\frac{\sqrt{391161}}{\sqrt{2500}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{391161}{2500}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{391161}}{\sqrt{2500}}.
\frac{380}{\frac{\sqrt{391161}}{50}}
Tātaitia te pūtakerua o 2500 kia tae ki 50.
\frac{380\times 50}{\sqrt{391161}}
Whakawehe 380 ki te \frac{\sqrt{391161}}{50} mā te whakarea 380 ki te tau huripoki o \frac{\sqrt{391161}}{50}.
\frac{380\times 50\sqrt{391161}}{\left(\sqrt{391161}\right)^{2}}
Whakangāwaritia te tauraro o \frac{380\times 50}{\sqrt{391161}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{391161}.
\frac{380\times 50\sqrt{391161}}{391161}
Ko te pūrua o \sqrt{391161} ko 391161.
\frac{19000\sqrt{391161}}{391161}
Whakareatia te 380 ki te 50, ka 19000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}